ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики компактные «СТК»

Назначение средства измерений

Теплосчетчики компактные «СТК» предназначены для измерения тепловой энергии, объема и температуры теплоносителя, а также для подсчета количества импульсов, формируемых приборами учета с импульсным выходом.

Описание средства измерений

Теплосчетчики компактные «СТК» изготовлены в виде единого блока и включают в себя преобразователь расхода, вычислитель и комплект платиновых термопреобразователей сопротивления (рисунок 1а, 1б и 1в).

Принцип работы теплосчетчиков компактных «СТК» состоит в измерении объема и температуры теплоносителя в подающем и обратном трубопроводах и последующем определении тепловой энергии, путем обработки результатов измерений вычислителем.

Теплосчетчики компактные «СТК» измеряют, вычисляют и отображают на ЖКИ следующие параметры:

- тепловую энергию, Гкал/Мкал;
- объем теплоносителя, M^3 ;
- температуру теплоносителя в подающем и обратном трубопроводах, °С;
- разность температур в подающем и обратном трубопроводах, °C;
- мгновенный расход теплоносителя, м³/ч;
- мгновенную тепловую мощность, Мкал/ч;
- время в часах;
- объемы воды, измеренные другими счетчиками с импульсным выходом, подключенными к счетным входам, m^3 :
- коды ошибок;
- номер прибора.

Теплосчетчики компактные «СТК» имеют энергонезависимую память, в которой регистрируются помесячные значения тепловой энергии не менее чем за 18 месяцев, посуточные значения не менее чем за 180 суток и почасовые значения не менее чем за 45 суток.

Значения кодов ошибок отображаются на жидкокристаллическом дисплее.

Теплосчетчики компактные «СТК» могут использоваться в режиме измерения тепла в «тупиковой» системе горячего водоснабжения, а также как счетчик горячей воды, определяющий объем воды, температура которой выше заданного значения.

Теплосчетчики компактные «СТК» могут быть укомплектованы следующими вариантами интерфейсных выходов: импульсный, RS485, радиоканал.

Рисунок 1а.

Рисунок 1б.

Рисунок 1в.

Пломбировка вычислителя осуществляется при помощи пломбы, рисунок 2.

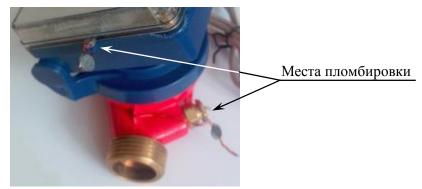


Рисунок 2.

Программное обеспечение

Программное обеспечение (ПО) теплосчетчиков компактных «СТК» представляет собой микропрограмму, установленную на заводе-изготовителе. Библиотека программы защищена 128-битным алгоритмом хэширования MD5 от изменения. Идентификационные данные программного обеспечения приведены в таблице 1. Таблица 1.

Наименование ПО	Идентифика- ционное на- именование ПО	Номер версии	Цифровой идентифика- тор ПО	Алгоритм вычисления цифрового идентификатора ПО
микропрограмма теплосчетчика	HeatMeter2_V1	1.x	69FB340E97DCB90A 7D8DFDB5E2669A65	128-битный алгоритм хэширования MD5
программа для калибровки, на- стройки, проверки	TestAll	2.3.x	A52BB90531353DF28 4D0F416DA7CC6FB	128-битный алгоритм хэширования MD5

Уровень защиты от непреднамеренных и преднамеренных изменений "C" согласно МИ 3286-2010.

Метрологические и технические характеристики

Основные технические и метрологические характеристики теплосчетчиков компактных «СТК» приведены в таблице 2.

Таблица 2.

Наименование параметра		Значение параметра				
Диаметр условного прохода, Ду, мм		15			20	
Максимальный расход Qmax, м ³ /ч		2	3,0	3,0	5,0	
Номинальный расход, Qn, м ³ /ч		1,0	1,5	1,5	2,5	
Минимальный расход, Qmin, м ³ /ч	0,012	0,02	0,03	0,03	0,05	
Пределы допускаемой относительной погрешности измерения тепловой энергии, %	$\pm (3+4/\Delta t + 0.02 \cdot (Qn/Q))$)			
Пределы допускаемой относительной погрешности измерения объёма, %		±(2+0,05·(Qn/Q))				
Диапазон измерений температуры, °C	й температуры, °C от 0 до +130					
Диапазон измерений разности температур (Δt), °C от +2 до +130		130				

Продолжение таблицы

емой абсолютной погрешности измеренератур, °C $\pm (0.2+0.005\cdot \Delta t)$
topul yp, C
емой относительной погрешности
$\pm 0,05$
емой абсолютной погрешности измере-
ипульсов дополнительными счетными ±1
ов за период измерений
бочее давление, МПа 1,6
три Qn, МПа, не более 0,15
применения:
ужающего воздуха, °С от +5 до +50
ужающего воздуха (при хранении), °С от минус 40 до +55
пажность воздуха, % от 20 до 95
ление, кПа от 61 до 106,7
ΓOCT 14254 IP54
ренного элемента питания, В 3,6
иента питания, не менее, лет 6
менее, лет
точее давление, МПа три Qn, МПа, не более применения: ужающего воздуха, °С ужающего воздуха (при хранении), °С пажность воздуха, % тост 14254 ренного элемента питания, В мента питания, не менее, лет 1,6 0,15 0,15 от +5 до +50 от минус 40 до +55 от 20 до 95 от 61 до 106,7 ПР54 з,6 мента питания, не менее, лет

Основные размеры и масса теплосчетчиков указаны в таблице 3.

Таблица 3

Наименование параметра	Значение параметра		
Диаметр условного прохода, мм	15	20	
Габаритные размеры (длина × ширина × высота), мм	125×105×160	135×105×160	
Резьба штуцеров для присоединения к трубопроводу, дюймы	1/2"	3/4"	
Резьба на корпусе теплосчетчиков, дюймы	3/4"	1"	
Монтажная длина, мм	110	130	
Масса, не более, кг	0,85	0,95	

Знак утверждения типа

наносится на переднюю панель индикаторного устройства и титульный лист руководства по эксплуатации, типографским способом.

Комплектность средства измерений

В комплект поставки входит:

- теплосчетчик компактный «СТК»	1 шт.;
- комплект монтажных частей	1 шт.;
- упаковка	1 шт.;
- руководство по эксплуатации	1 шт.

Поверка

осуществляется по документу МП РТ 1941-2013 "ГСИ. Теплосчетчики компактные «СТК». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» 24 июля 2013 г.

При поверке применяются следующие средства измерения:

- установка поверочная с диапазоном расхода от 0.01 до 5 м 3 /ч, пределы допускаемой погрешности по объёмному расходу не более ± 0.5 %;
- термостат переливной, нестабильность температуры не более ± 0.02 °C;
- термостат нулевой, нестабильность температуры не более ± 0.02 °C;

- измеритель температуры многоканальный МИТ-8.10, ПГ $\pm 0.004+10^{-5} \cdot |t|$ °C;
- термометр сопротивления платиновый вибропрочный ПТСВ-1-2, ПГ не более 0,02 °C;
- секундомер электронный «Интеграл C-01», ПГ $\pm (9,6\cdot 10^{-6}\cdot T_x+0,01)$ с;
- генератор импульсов АКИП-3301, ПГ $\pm (5 \cdot \text{T} \cdot 10^{-5} + 5 \text{ нc});$
- частотомер электронно-счётный Ч3-63, ПГ $\pm 5 \cdot 10^{-7} + 1$ ед. сч;
- адаптер RS485 для подключения к компьютеру;
- программное обеспечение для работы с теплосчётчиками компактными «СТК»

Сведения о методиках (методах) измерений

Отсутствуют.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам компактным «СТК»

ТУ 4213-006-77986247-2013 «Технические условия. Теплосчетчики компактные «СТК».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ПК ПРИБОР»

129110, г. Москва, Банный пер., д.2, стр.1, тел. (495)232-19-30 www.pkpribor.ru, metronic@decast.com

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ГЦИ СИ ФБУ «Ростест-Москва»)

Адрес: 117418 Москва, Нахимовский пр., 31, тел. (495)544-00-00; info@rostest.ru.

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2013 г.